

Looking for primordial non-Gaussianity in the LSS a new insight from the peak approach to halo clustering

Matteo Biagetti

University of Geneva

MB & Desjacques, MNRAS **451** (2015) 3643 [arXiv:1501.04982] work in preparation with Vincent Desjacques, Fabian Schmidt, Tobias Baldauf, Titouan Lazeyras

Motivation

What is the mechanism for primordial perturbations?

Perturbations at the surface of last scattering are observable as temperature anisotropies in the CMB

What is the mechanism for primordial perturbations?

- Perturbations are of the adiabatic/curvature type
- Gaussian (or very close to it)

Single field

perturbations generated by inflaton itself at horizon crossing

Multi field

perturbations generated by other field(s) after inflation

What is the mechanism for primordial perturbations? Primordial non-Gaussianity is the key ingredient

Local type quadratic non-Gaussianity

$$\zeta(x) = \zeta_{\rm G}(x) + f_{\rm NL}^{\rm loc}(\zeta_{\rm G}^2(x) - \langle \zeta_{\rm G}^2 \rangle)$$

Single field Maldacena (2003)

$$f_{
m NL}^{
m loc}=0.8\pm5.0$$
 Planck (2015)

Multi field

What is the mechanism for primordial perturbations? Primordial non-Gaussianity is the key ingredient

Signatures of primordial non-Gaussianity in Large Scale Structure

$$\frac{P_{\rm hm}(k)}{P_{\rm mm}(k)} = b_1 + \frac{2f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} \delta_c b_1^{\rm L}$$

where $\mathcal{M}(k) \propto k^2$ at large scales

Dalal, Dore, Huterer, Shirokov (2007)

Matarrese & Verde (2008)

What is the mechanism for primordial perturbations? Primordial non-Gaussianity is the key ingredient

Signatures of primordial non-Gaussianity in Large Scale Structure

$$\frac{P_{\rm hm}(k)}{P_{\rm mm}(k)} = b_1 + \frac{2f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} \delta_c b_1^{\rm L}$$

Future surveys seem to have very competitive forecasts...

Bispectrum shape	local	orthogonal	equilateral
Fiducial $f_{\rm NL}$	0	0	0
Galaxy clustering (spectr. z) Galaxy clustering (photom. z) Weak lensing Combined	4.1 (4.0)	54 (11)	220 (35)
	5.8 (5.5)	38 (9.6)	140 (37)
	73 (27)	9.6 (3.5)	34 (13)
	4.7 (4.5)	4.0 (2.2)	16 (7.5)

1σ errors	PS	Bispec	PS + Bispec	EUCLID	Current
$f_{ m NL}^{ m lo c}$	0.87	0.23	0.20	5.59	5.8
Tilt $n_s \ (\times 10^{-3})$	2.7	2.3	2.2	2.6	5.4
Running α_s (×10 ⁻³)	1.3	1.2	0.65	1.1	17
Curvature Ω_K (×10 ⁻⁴)	9.8	NC	6.6	7.0	66
$Dark\ Energy\ FoM=1/\sqrt{DetCov}$	202	NC	NC	309	25

Euclid Collaboration (2012)

SPHEREx collaboration (2014)

What is the mechanism for primordial perturbations? Primordial non-Gaussianity is the key ingredient

Signatures of primordial non-Gaussianity in Large Scale Structure

$$\frac{P_{\rm hm}(k)}{P_{\rm mm}(k)} = b_1 + \frac{2f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} \underbrace{\delta_c b_1^{\rm L}}_{1}$$

...but is $\,\delta_c b_1^{
m L}\,$ a accurate enough prediction for $\,{\cal O}(\sigma_{f_{
m NL}}) \simeq 1\,$?

In this talk

- Model independent amplitude for non gaussian bias
 (Peak Background Split)
 Slosar, Hirata, Seljak, Ho, Padmanabhan (2008)
- Both these amplitudes are different than $\delta_c b_1^{
 m L}$

What is the mechanism for primordial perturbations? Primordial non-Gaussianity is the key ingredient

Signatures of primordial non-Gaussianity in Large Scale Structure

$$\frac{P_{\rm hm}(k)}{P_{\rm mm}(k)} = b_1 + \frac{2f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} \underbrace{\delta_c b_1^{\rm L}}_{1}$$

...but is $\,\delta_c b_1^{
m L}\,$ a accurate enough prediction for $\,{\cal O}(\sigma_{f_{
m NL}}) \simeq 1\,$?

Not in this talk

- We observe redshifts and angles, not k
- Relativistic effects
- Astrophysical systematics
- Halo Occupation Distribution (how galaxies distribute in halos)

•

Peak Background Split

Halo biasing the Peak Background Split ansatz

long-wavelength field locally modulates threshold for collapse

Halo biasing the Peak Background Split ansatz

$$\delta = \delta_{\rm L} + \delta_{\rm S}$$

$$\delta_{h}(\vec{x}, M, \delta_{c}) \equiv \frac{n_{h}(\vec{x}, M, \delta_{c})}{\bar{n}_{h}(M, \delta_{c})} - 1 \approx \frac{\bar{n}_{h}(M, \delta_{c} - \delta_{L}(\vec{x}))}{\bar{n}_{h}(M, \delta_{c})} - 1$$

$$\approx \frac{1}{\bar{n}_{h}} \frac{d\bar{n}_{h}}{d\delta_{g}} \delta_{L}(\vec{x}) + \dots$$

$$b_{1}$$

long-wavelength field locally modulates threshold for collapse

Halo biasing the Peak Background Split ansatz

$$\Phi = \phi_{\rm G} + f_{\rm NL} \phi_{\rm G}^2$$

Local quadratic non-Gaussianity

Halo biasing the Peak Background Split ansatz

$$\Phi = \phi_{\rm G} + f_{\rm NL} \phi_{\rm G}^2$$

Local quadratic non-Gaussianity

PBS ansatz

$$\Phi = \phi_{\rm L} + f_{\rm NL}\phi_{\rm L}^2 + (1 + 2f_{\rm NL}\phi_{\rm L})\phi_{\rm S} + f_{\rm NL}\phi_{\rm S}^2$$

Non gaussian bias the Peak Background Split ansatz

$$\Phi = \phi_{\rm G} + f_{\rm NL} \phi_{\rm G}^2$$

Local quadratic non-Gaussianity

PBS ansatz

$$\Phi = \phi_{\rm L} + f_{\rm NL}\phi_{\rm L}^2 + (1 + 2f_{\rm NL}\phi_{\rm L})\phi_{\rm S} + f_{\rm NL}\phi_{\rm S}^2$$

$$\delta = \mathcal{M} \star \Phi$$

$$\delta_{\rm S} \approx \mathcal{M} \star (1 + 2f_{\rm NL}\phi_{\rm L})\phi_{\rm S}$$

being
$$\mathcal{M}(k) = \frac{2}{3} \frac{k^2 T(k) D(z)}{\Omega_m H_0^2}$$

Non gaussian bias the Peak Background Split ansatz

Long- and short-wavelength modes are now mixed, the effect is to modify the amplitude of the matter fluctuations

$$\sigma_8 \to (1 + 2f_{\rm NL}\phi_{\rm L})\sigma_8 = \hat{\sigma}_8$$

Non gaussian bias the Peak Background Split ansatz

Long- and short-wavelength modes are now mixed, the effect is to modify the amplitude of the matter fluctuations

$$\sigma_8 \to (1 + 2f_{\rm NL}\phi_{\rm L})\sigma_8 = \hat{\sigma}_8$$

$$\equiv b_{\rm NG}^{\rm PBS}$$

$$\delta_h(\vec{x}, M, \delta_c) \approx b_1 \, \delta_{\rm L}(\vec{x}) + 2f_{\rm NL} \underbrace{\frac{\partial \ln \bar{n}_h}{\partial \ln \hat{\sigma}_8}} \phi_{\rm L}(\vec{x}) + \dots$$

for universal mass function this is the well-known $\delta_c b_1^{\rm L}$ but in the case of non-universality things get more complicated

$$\Delta b_{\rm NG}(k) \propto 2 f_{\rm NL}^{\rm loc} \frac{b_{\rm NG}}{k^2}$$

On the universality of the mass function

Excursion Set Peaks

- Peak model: consider density peaks of the early distribution of matter and move them forward in time; Bardeen, Bond, Kaiser, Szalay (1986)
- (Most) halos will form around initial peaks; Ludlow & Porciani (2011)
- Impose that peaks on a given smoothing scale are counted only if they satisfy a first crossing condition.

Paranjape, Lam, Sheth (2012) Paranjape, Sheth, Desjacques (2013)

Expand the density field and its gradient around maxima

$$n_{\rm pk}(\mathbf{x}) = \sum_{p} \delta^{(3)}(\mathbf{x} - \mathbf{x_p})$$
$$\approx |\det \zeta(\mathbf{x})| \, \delta^{(3)}[\eta(\mathbf{x})]$$

where ζ must be negative definite at the peak

A peak of the smoothed density field is defined by its height, slope and curvature

$$\nu(\mathbf{x}) \equiv \frac{1}{\sigma_0} \delta_s(\mathbf{x}) \quad \eta_i(\mathbf{x}) \equiv \frac{1}{\sigma_1} \partial_i \delta_s(\mathbf{x}) \quad \zeta_{ij}(\mathbf{x}) \equiv \frac{1}{\sigma_2} \partial_i \partial_j \delta_s(\mathbf{x})$$

N-point correlation function of discrete statistics involve 10N variables...

$$\langle n_{\text{pk}}(\mathbf{x}) \rangle = \langle |\det \zeta(\mathbf{x})| \, \delta^{(3)}[\eta(\mathbf{x})] \rangle$$
$$= \int d\nu \, d^6 \zeta \, |\det \zeta| \, P_1(\nu, \eta = 0, \zeta)$$

where ζ must be negative definite at the peak

...but effective local bias expansion of invariants

$$\begin{split} \delta_{\mathrm{pk}}(\mathbf{x}) &= b_{10}\delta_{s}(\mathbf{x}) - b_{01}\nabla^{2}\delta_{s}(\mathbf{x}) + \frac{1}{2}b_{20}\delta_{s}^{2}(\mathbf{x}) - b_{11}\delta_{s}(\mathbf{x})\nabla^{2}\delta_{s}(\mathbf{x}) & \textit{Desjacques (2013)} \\ &+ \frac{1}{2}b_{02}[\nabla^{2}\delta_{s}(\mathbf{x})]^{2} + \chi_{10}(\nabla\delta_{s})^{2}(\mathbf{x}) + \frac{3}{2}\chi_{01}\left[\partial_{i}\partial_{j}\delta_{s}(\mathbf{x}) - \frac{1}{3}\delta_{ij}\nabla^{2}\delta_{s}(\mathbf{x})\right]^{2} \end{split}$$

Effective local bias expansion in terms of rotational invariants

$$\delta_{pk}(\mathbf{x}) = b_{10}\delta_s(\mathbf{x}) - b_{01}\nabla^2\delta_s(\mathbf{x}) + \frac{1}{2}b_{20}\delta_s^2(\mathbf{x}) - b_{11}\delta_s(\mathbf{x})\nabla^2\delta_s(\mathbf{x})$$
$$+ \frac{1}{2}b_{02}[\nabla^2\delta_s(\mathbf{x})]^2 + \chi_{10}(\nabla\delta_s)^2(\mathbf{x}) + \frac{3}{2}\chi_{01}\left[\partial_i\partial_j\delta_s(\mathbf{x}) - \frac{1}{3}\delta_{ij}\nabla^2\delta_s(\mathbf{x})\right]^2$$

and bias parameters are fully predicted by the model

$$\sigma_0^i \sigma_2^j b_{ij} = \frac{1}{\bar{n}_{pk}} \int d^{10} \mathbf{y} \, n_{pk}(\mathbf{y}) H_{ij}(\nu, u) P_1(\mathbf{y})$$

(Most) halos will form around initial peaks;

Ludlow & Porciani (2011) Ludlow, Borzyszkowski, Porciani (2014)

 Impose that peaks on a given smoothing scale are counted only if they satisfy a first crossing condition.

 Impose that peaks on a given smoothing scale are counted only if they satisfy a first crossing condition.

Collapse is not spherical (at low masses)

Barrier is not flat it decreases with mass and it scatters

Scatter comes from shear, tides, etc...

• Impose that **peaks** on a given smoothing scale are **counted** only if they satisfy a first crossing condition.

• Impose that **peaks** on a given smoothing scale are **counted** only if they satisfy a first crossing condition.

Putting all together we get a non universal halo mass function

MB, Chan, Desjacques, Paranjape (2013)

a remainder: we want to predict

$$\frac{P_{\rm hm}(k)}{P_{\rm mm}(k)} = b_1 + 2f_{\rm NL}^{\rm loc} \frac{b_{\rm NG}}{\mathcal{M}(k)}$$

using effective bias expansion (in Fourier space)

$$\delta_h(k) = c_1(k)\delta_m(k) + \int \frac{d^3\mathbf{q}}{(2\pi)^3}c_2(\mathbf{q}, \mathbf{k} - \mathbf{q})\delta_m(\mathbf{q})\delta_m(\mathbf{k} - \mathbf{q}) + \dots$$

we can compute the halo - matter cross correlation

$$\frac{\langle \delta_h \delta_m \rangle}{\langle \delta_m \delta_m \rangle}$$

$$c_{1}(k) \equiv (b_{10} + b_{01}k^{2})$$

$$c_{2}(\mathbf{k_{1}}, \mathbf{k_{2}}) \equiv b_{20} + b_{11}(k_{1}^{2} + k_{2}^{2}) + b_{02}k_{1}^{2}k_{2}^{2}$$

$$-2\chi_{10}(\mathbf{k_{1}} \cdot \mathbf{k_{2}}) + \chi_{01}\left[3(\mathbf{k_{1}} \cdot \mathbf{k_{2}})^{2} - k_{1}^{2}k_{2}^{2}\right]_{32}$$

using effective bias expansion we can compute the halo - matter cross correlation

$$P_{hm}(k) \stackrel{k \to 0}{\approx} \left[c_1(k) + \frac{2f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} \int \frac{d^3\mathbf{q}}{(2\pi)^3} c_2(\mathbf{q}, -\mathbf{q}) P_{mm}(q) \right] P_{mm}(k)$$

$$c_{1}(k) \equiv (b_{10} + b_{01}k^{2})$$

$$c_{2}(\mathbf{k_{1}}, \mathbf{k_{2}}) \equiv b_{20} + b_{11}(k_{1}^{2} + k_{2}^{2}) + b_{02}k_{1}^{2}k_{2}^{2}$$

$$-2\chi_{10}(\mathbf{k_{1}} \cdot \mathbf{k_{2}}) + \chi_{01}\left[3(\mathbf{k_{1}} \cdot \mathbf{k_{2}})^{2} - k_{1}^{2}k_{2}^{2}\right]_{33}$$

using effective bias expansion we can compute the halo - matter cross correlation

$$P_{hm}(k)^{k \to 0} \left[c_1(k) + \frac{2f_{\rm NL}^{\rm loc}}{\mathcal{M}(k)} \left(\underbrace{\frac{d^3 \mathbf{q}}{(2\pi)^3} c_2(\mathbf{q}, -\mathbf{q}) P_{mm}(q)}_{\mathbf{q}} \right) \right] P_{mm}(k)$$

$$= b_{\rm NG}^{\rm ESP}$$

$$c_{1}(k) \equiv (b_{10} + b_{01}k^{2})$$

$$c_{2}(\mathbf{k_{1}}, \mathbf{k_{2}}) \equiv b_{20} + b_{11}(k_{1}^{2} + k_{2}^{2}) + b_{02}k_{1}^{2}k_{2}^{2}$$

$$-2\chi_{10}(\mathbf{k_{1}} \cdot \mathbf{k_{2}}) + \chi_{01}\left[3(\mathbf{k_{1}} \cdot \mathbf{k_{2}})^{2} - k_{1}^{2}k_{2}^{2}\right]$$

Is this result compatible with the PBS prediction?

$$b_{\text{NG}}^{\text{ESP}} = \int \frac{d^3\mathbf{q}}{(2\pi)^3} c_2(\mathbf{q}, -\mathbf{q}) P(q) = \sigma_0^2 b_{20} + 2\sigma_1^2 b_{11} + \sigma_2^2 b_{02} + 2\sigma_1^2 \chi_{10} + 2\sigma_2^2 \chi_{01}$$

Yes, almost...

$$b_{\text{NG}}^{\text{ESP}} = \int \frac{d^3 \mathbf{q}}{(2\pi)^3} c_2(\mathbf{q}, -\mathbf{q}) P(q)$$
$$= \sigma_0^2 b_{20} + 2\sigma_1^2 b_{11} + \sigma_2^2 b_{02}$$
$$+ 2\sigma_1^2 \chi_{10} + 2\sigma_2^2 \chi_{01}$$

$$\equiv b_{NG}^{\text{PBS}} = \frac{\partial \ln \bar{n}_h}{\partial \ln \sigma_8}$$

Desjacques, Gong, Riotto (2014)

$$\neq b_{NG}^{PBS} = \frac{\partial \ln n_h}{\partial \ln \sigma_8}$$

MB, Desjacques (2015)

$$\Delta b_{\rm NG}(k) \propto 2 f_{\rm NL}^{\rm loc} \frac{b_{\rm NG}}{k^2}$$

Non gaussian bias **Summary of predictions (within ESP)**

 $\Delta b_{\rm NG}(k) \propto 2 f_{\rm NL}^{\rm loc} \frac{b_{\rm NG}}{k^2}$

MB, Desjacques (2015)

Non gaussian bias Summary of predictions

Non gaussian bias	Moving barrier	Non Universality	
$\delta_c b_1^{ m L}$	NO	NO	
$\frac{\partial \ln \bar{n}_h}{\partial \ln \sigma_8}$	YES	YES	
$b_{ m NG}^{ m ESP}$	YES	NO	

 $\Delta b_{
m NG}(k) \propto 2 f_{
m NL}^{
m loc} rac{b_{
m NG}}{k^2}$

Input $\delta_c b_1^{
m L}$ as the non gaussian bias amplitude

$$\Delta b_{
m NG}(k) \propto 2 f_{
m NL}^{
m loc} rac{b_{
m NG}}{k^2}$$

Hamaus, Seljak & Desjacques (2011)

 $\Delta b_{\rm NG}(k) \propto 2 f_{\rm NL}^{\rm loc} \frac{b_{\rm NG}}{k^2}$

Scoccimarro, Hui, Manera & Chan (2012)

Non gaussian bias with moving barrier

 $\Delta b_{\rm NG}(k) \propto 2 f_{\rm NL}^{\rm loc} \frac{b_{\rm NG}}{k^2}$

Adshead, Baxter, Dodelson, Lidz (2012)

simple check: compute

$$\frac{\partial \ln \bar{n}_h}{\partial \ln \sigma_8}$$
 from simulations

- Run N body simulations with different σ_8 but same cosmology
- Find halos with Halo finder (Spherical Overdensity)
- Compute Halo Mass Function
- Compute numerical derivative of HMF wrt σ_8

Non gaussian bias

Can we use $\,\delta_{\mathbf{c}}\mathbf{b}_{\mathbf{1}}^{\mathrm{L}}$?

Concluding remarks

Take Home Message

1) Careful when making forecasts

Fisher forecasts use

$$b_{\rm NG} = \delta_c b_1^{\rm L}$$

Bispectrum shape	local	orthogonal	equilateral
Fiducial $f_{ m NL}$	0	0	0
Galaxy clustering (spectr. z)	4.1 (4.0)	54 (11)	220 (35)
Galaxy clustering (photom. z)	5.8(5.5)	38 (9.6)	140(37)
Weak lensing	73(27)	9.6(3.5)	34(13)
Combined	4.7(4.5)	4.0(2.2)	16 (7.5)

Euclid Collaboration (2012)

1σ errors	PS	Bispec	PS + Bispec	EUCLID	Current
$f_{ m NL}^{ m loc}$	0.87	0.23	0.20	5.59	5.8
Tilt $n_s \ (\times 10^{-3})$	2.7	2.3	2.2	2.6	5.4
Running α_s (×10 ⁻³)	1.3	1.2	0.65	1.1	17
Curvature $\Omega_K (\times 10^{-4})$	9.8	NC	6.6	7.0	66
Dark Energy FoM = $1/\sqrt{\text{DetCov}}$	202	NC	NC	309	25

Take Home Message

2) If we do not want any modelling, fits maybe need to be changed

Even if halo mass function is universal to a certain degree, its derivative wrt matter amplitude may be very different than what expected

Take Home Message

3) Modelling needs a better understanding of collapse

work in preparation with Vincent Desjacques, Fabian Schmidt, Tobias Baldauf, Titouan Lazeyras